Low-Speed Natural-Laminar-Flow Airfoils: Case Study in Inverse Airfoil Design
نویسندگان
چکیده
A systematic study of the trends in low-speed natural-laminar- ow airfoils for general aviation applications is presented. The airfoils have been designed using a multipoint inverse airfoil design method, which allows for speci cation of velocity and boundary-layer properties over different portions of the airfoil. A panel method with a coupled boundary-layer scheme is used to analyze the characteristics of the resulting airfoils. By systematically adjusting the speci cations, families of airfoils have been designed with different lift, drag, and pitching-moment characteristics. Parametric studies are presented to study the tradeoffs involved in designing laminar- ow airfoils for general aviation. Although the results of the study are speci c to the class of airplanes considered, the design philosophies and the design approach used in the study are applicable to a wide range of airplanes. In addition, the examples presented in the paper form an excellent case study to demonstrate the power of modern inverse design techniques in controlling the performance of an airfoil to a ne degree and in generating a custom database of airfoils suitable for airplane multidisciplinary optimization and trade studies.
منابع مشابه
Numerical solution of unsteady flow on airfoils with vibrating local flexible membrane
Unsteady flow separation on the airfoils with local flexible membrane (LFM) has been investigated in transient and laminar flows by the finite volume element method. A unique feature of the present method compared with the common computational fluid dynamic softwares, especially ANSYS CFX, is the modification using the physical influence scheme in convection fluxes at cell surfaces. In contr...
متن کاملLaminarFlowSeparation andTransition on a Low-Reynolds-Number Airfoil
A NUMBER of military and civilian applications require efficient operation of airfoils in low chord Reynolds numbers. The applications include propellers, sailplanes, ultralight mancarrying/man-powered aircraft, high-altitude vehicles, wind turbines, unmanned aerial vehicles, and micro air vehicles. Careful management of boundary layers on low-Reynolds-number airfoils is required to alleviate t...
متن کاملInverse Airfoil Design Utilizing CST Parameterization
An inverse airfoil design process is presented that makes use of the CST parameterization method. The CST method is very powerful in that it can easily represent any airfoil shape within the entire design space of smooth airfoils. This makes it an ideal modeling technique for an inverse design process because accurate airfoil geometry treatment is required. The downfall of some inverse design p...
متن کاملDesign and Implementation of the Rotor Blades of Small Horizontal Axis Wind Turbine
Since the renewable resources of energy have become extremely important, especially wind energy, scientists have begun to modify the design of the wind turbine components, mainly rotor blades. Aerodynamic design considered a major research field related to power production of a small horizontal wind turbine, especially in low wind speed locations. This study displays an approach to the selectio...
متن کاملAerodynamic Hysteresis of a Low- Reynolds-Number Airfoil
L OW-REYNOLDS-NUMBER airfoil aerodynamics is important for bothmilitary and civilian applications. The applications include propellers, sailplanes, ultralight man-carrying/man-powered aircraft, high-altitude vehicles, wind turbines, unmanned aerial vehicles (UAVs), and micro air vehicles (MAVs). For the applications just listed, the combination of small length scale and low flight velocities re...
متن کامل